The Context Isolation Trap:
Why Standard i18n Breaks in MDX

Server Context

r
Astro.locals
Request Cookies
User Headers

8

The Problem

MDX renders as static HTML. It is
isolated from the server request
lifecycle.

/\ Error: Context Unavailable

The Fail State

Standard useTranslation() hooks
return undefined because the Context
Provider is missing in the island.

MDX Island

<InteractiveComponent />

The Bloat

Client-side fixes require shipping large
JSON bundles, blocking hydration.

EDGEKITS




The Pattern: Server Controller, Pure View

f

The Wrapper (.astro)

(P
|

Server Fetch / KV—J

Props Injection

4
The Island (.tsx) v
3

Pure UI / No Side Effects

=N 5

N

e Separation of Concerns: Split
logic into a Data Controller
and a Pure View.

 Server-Side Fetching: The
.astro wrapper runs entirely
on the server (SSR).

e Prop Drilling: Translations
are passed as serializable

props.

o Zero Network Requests: The
component hydrates with
data already present.

{ ) EDGEKITS



Implementation Step 1: The Bridge (.astro)

This file lives in the
components folder but acts as
the glue between MDX and
Edge data.

e Access ‘translationLocale’
from ‘Astro.locals’.

» Fetch namespaces (e.g.,
'blog’') via
“fetchTranslations'.

e Render the React
component with
‘client:visible .

» Pass the dictionary as the
“t° prop.

/| src/components/blog/LocalizedCounterWrapper.astro
import { LocalizedCounter } from '@/components/islands/LocalizedCounter’
import { fetchTranslations } from '@/domain/il8n/fetcher’

const { translationLocale, runtime } = Astro.locals
const { blog } = await fetchTranslations(runtime, translationLocale, ['blog'])

const t = blog.counter

<LocalizedCounter
client:visible
t={t}
locale={translationLocale}
labels={blog.counter}

/>

EDGEKITS



Implementation Step 2: The Pure Ul Component (.tsx)

~

-

src/components/islands/LocalizedCounter.tsx

// src/components/islands/LocalizedCounter.tsx
interface LocalizedCounterProps {
t: I18n.Schema['blog']['counter'] // Typed Dictionary
initial?: number
locale: string T

Llabels: CounterlLabels

}

export const LocalizedCounter = ({
t,
initial = 0,
locale,
labels,

}: LocalizedCounterProps) => {
// ... Standard React Logic ...
return (

<div className="text-4x1">
{t.title} {/x Used directly from props */} @-

o {Type Safety: Validated

against JSON Schema

|

_o | Zero Hooks: Data is jus

</div>
)
+

a prop

tJ u

) EPGEKITS D




Implementation Step 3: Injecting the Wrapper into MDX

// pages/[lang]/blog/[...slug].astro
import LocalizedCounterWrapper from
'@/components/blog/LocalizedCounterWrapper.astro'

/e teteh pest logic: ...

<LocalizedCounter />

<Baselayout>
<Content
components={{
// Map MDX tag to the Astro Wrapper

/é> L t The Magic Trick: MDX writes the
S tag, Astro renders the Wrapper.

0 EDGEKITS.DEV



The Edge-Native Advantage

Zero Client JS

: / —

Translations are baked into HTML during SSR. No hydration blocking.
g Perfect Hydration |
Components wake up immediately with valid props. No layout shift or flicker.
-

v Resilient Fallbacks
Build-time safety ensures props are never undefined, even if the DB fails.

\/ Developer Experience |

Content creators write simple Markdown; Engineers control the data pipeline.

L) EDGEKITS.



Ready to Ship Zero-JS i18n? /#

EdgeKits / astro-edgekits-core r BB The Full Deep Dive

The open-source starter for zero-JS edge translations. 7| Read the complete architecture
breakdown on the EdgeKits.dev blog.

N J

B Join Early Birds

Get exclusive advanced Astro patterns
& launch discounts.

X @GaryEdgeKits
Let’s talk Edge stuff!

) EDGEKITS


https://github.com/EdgeKits/astro-edgekits-core
https://edgekits.dev/
https://x.com/GaryEdgeKits
https://edgekits.dev/en/blog/stop-shipping-translation-json-part-1/

	Слайд 1
	Слайд 2
	Слайд 3
	Слайд 4
	Слайд 5
	Слайд 6
	Слайд 7

